
Adding An I/O Device To A SIMH Virtual Machine
Updated 01-Oct-04 for SIMH V3.3

This memo provides more detail on adding I/O device simulators to the various virtual machines
supported by SIMH.

1. SCP and I/O Device Interactions

1.1 The SCP Interface

The simulator control package (SCP) finds devices through the device list, DEVICE *sim_devices.
This list, defined in <simname>_sys.c, must be modified to add the DEVICE data structure(s) of
the new device to sim_devices:

extern DEVICE new_device;
:
DEVICE *sim_devices[] = {
 &cpu_dev,

:
 &new_device,
 NULL };

The device then defines data structures for UNITs, REGISTERs, and, if required, options.

1.2 I/O Interface Requirements

SCP provides interfaces to attach files to, and detach them from, I/O devices, and to examine and
modify the contents of attached files. SCP expects devices to store individual data words right-
aligned in container words. The container words should be the next largest power of 2 in width:

 Data word Container word

 1b to 8b 8b
 9b to 16b 16b
 17b to 32b 32b
 33b to 64b 64b (requires compile flag –DUSE_INT64)

1.3 Save/Restore Interactions

The Save/Restore capability allows simulations to be stopped, saved, resumed, and repeated.
For save and restore to work properly, I/O devices must save and restore all state required for
operation. This includes control registers, working registers, intermediate buffers, and mode
flags.

Save and restore automatically handle the following state items:

• Content of declared registers.
• Content of memory-like structures.
• Device user-specific flags and DEV_DIS.
• Whether each unit is attached to a file and, if so, the file name.
• Whether each unit is active, and, if so, the unit time out.
• Unit U3-U6 words.
• Unit user-specific flags and UNIT_DIS.

There are two methods for handling intermediate buffers. First, the buffer can be made
accessible as unit memory. This requires buffer-specific examine and deposit routines.
Alternately, the buffer can be declared as an arrayed register.

2. PDP-8

2.1 CPU and I/O Device Structures

Simulated memory is kept in array uint16 M[MAXMEMSIZE]. 12b words are right justified in each
array entry; the high order 4b must be zero.

The interrupt structure is implemented in three parallel variables:

• int32 int_req: interrupt requests. The two high order bits are the interrupt enable flag and
the interrupts-not-deferred flag

• int32 dev_done: device done flags
• int32 int_enable: device interrupt enable flags

A device without interrupt control keeps its interrupt request, which is also the device done flag, in
int_req. A device with interrupt control keeps its interrupt request in dev_done and its interrupt
enable flag in int_enable. Pictorially,

 +----+----+…+----+----+…+----+----+----+
 |ion |indf| |irq1|irq2| |irqx|irqy|irqz| irq_req
 +----+----+…+----+----+…+----+----+----+

 +----+----+…+----+----+…+----+----+----+
 | 0 | 0 | | 0 | 0 | |donx|dony|donz| dev_done
 +----+----+…+----+----+…+----+----+----+

 +----+----+…+----+----+…+----+----+----+
 | 0 | 0 | | 0 | 0 | |enbx|enby|enbz| int_enable
 +----+----+…+----+----+…+----+----+----+

 <- fixed -> <-no enbl-> <- with enable->

Logically, the relationship is

 int_req = (int_req & (OVHD+NOENB)) | (dev_done & dev_enable);

Macro INT_UPDATE maintains this relationship after a change to any of the three variables.

Device enable flags are kept in dev_enb. The device enable flag, by convention, is the same bit
position as device interrupt flag.

I/O dispatching is done by explicit case decoding in the IOT instruction flow for CPU IOT’s, and
dispatch through table dev_tab[64] for devices. Each entry in dev_tab is a pointer to a device IOT
processing routine. The calling sequence for the IOT routine is:

 new_data = iot_routine (IOT instruction, current AC);

where

 new_data<11:0> = new contents of AC
 new_data<IOT_V_SKP> = 1 if skip, 0 if not

 new_data<31:IOT_V_REASON> = stop code, if non-zero

2.2 DEVICE Context and Flags

The DEVICE ctxt (context) field must point to the device information block (DIB), if one exists.
The DEVICE flags field must specify whether the device supports the “SET ENABLED/SET
DISABLED” commands (DEV_DISABLE). If a device can be disabled, the state of the device
flag<DEV_DIS> must be declared as a register for SAVE/RESTORE.

2.3 Adding A New I/O Device

2.3.1 Defining The Device Number and Done/Interrupt Flag

Module pdp8_defs.h must be modified to add the device number definitions and the device
interrupt flag definitions. The device number is the lowest device number that the device
responds to (e.g, 060 for the RL8A):

#define DEV_NEW 0nn /* not 0,010,020-027 */

If the device has a separate interrupt enable, the interrupt flag must be added above
INT_V_DIRECT, and the latter increased accordingly:

#define INT_V_TTI4 (INT_V_START+13) /* clock */
#define INT_V_NEW (INT_V_START+14) /* new */
#define INT_V_DIRECT (INT_V_START+15) /* direct start */
:
#define INT_NEW (1 << INT_V_NEW)

If the device has only an interrupt/done flag, it must be added between INT_V_DIRECT and
INT_V_OVHD, and the latter increased accordingly:

#define INT_V_UF (INT_V_DIRECT+8) /* user in
#define INT_V_NEW (INT_V_DIRECT+9) /* new */

t */

#define INT_V_OVHD (INT_V_DIRECT+10) /* overhead start */
:
#define INT_NEW (1 << INT_V_NEW)

2.3.2 Adding The Device Information Block

The device information block is declared in the device module, as follows:

int32 iotrtn1 (int32 instruction, int32 AC);
int32 iotrtn2 (int32 instruction, int32 AC);
:
DIB dev_dib = { DEV_NEW, num_iot_routines, { &iotrtn1, &iotrn2, … } };

DEV_NEW is the device number, and num_iot_routines is the number of IOT dispatch routines
(allocated contiguously starting at DEV_NEW). If a device number in the range defined by
[DEV_NEW, DEV_NEW + num_iot_routines - 1] is not needed, the corresponding dispatch
address should be NULL.

3. PDP-11, VAX, VAX-780, and PDP-10

3.1 Memory

For the PDP-11, simulated memory is kept in array uint16 *M, dynamically allocated. For the
VAX and VAX-780, simulated memory is kept in array uint32 *M, dynamically allocated. For the
PDP-10, simulated memory is kept in array t_uint64 *M, dynamically allocated. Because the
three systems use different memory widths and different I/O mapping schemes, DMA peripherals
that are shared among them use interface routines to access memory.

3.2 Interrupt Structure

The interrupt structure is implemented by array int_req, indexed by priority level (except on the
PDP-10, where all levels are kept in one word). Each device is assigned a request flag in
int_req[device_IPL], according to its priority, with highest priority at the right (low order bit). To
facilitate access to int_req across the three systems, each device dev defines three variables:

INT_V_dev – the bit number of the device’s interrupt request flag
INT_dev – the mask of the device’s interrupt request flag
IPL_dev – the index into int_req for the device’s priority level (PDP-11, VAX only)

Four macros allow simulated devices to access and manipulate interrupt structures independent
of the underlying VM:

 IVCL (dev) – vector locator for DIB (IPL * 32 + bit number)
 IREQ (dev) – resolves to int_req[device_IPL]
 CLR_INT (dev) – clears the device’s interrupt request flag
 SET_INT (dev) – sets the device’s interrupt request flag

3.3 I/O Dispatching

3.3.1 Unibus/Qbus Devices

For Unibus and Qbus devices, I/O dispatching is done by table-driven address decoding in the
I/O page read and write routines. Interrupt handling is done by table driven processing of vector
and interrupt handling tables. These tables are constructed at run time from device information
blocks (DIB’s). Each I/O device has a DIB with the following information:

 { IO page base address, IO page length, read_routine, write_routine,

 num_vectors, vector_locator, vector, { &iack_rtn1, &iack_rtn2, … } }

The calling sequence for an I/O read is:

 t_stat read_routine (int32 *data, int32 pa, int32 access)

The calling sequence for an I/O write is:

 t_stat write_routine (int32 data, int32 pa, int32 access)

For both, the access parameter can have one of the following values:

 READ normal read
 READC console read (PDP-11 only)
 WRITE word write
 WRITEC console word write (PDP-11 only)
 WRITEB byte write

I/O read and I/O word write use word (even) addresses; the low order bit of the address should
be ignored. I/O byte write uses byte addresses, and the data byte to be written is right-justified in
the calling argument.

If the device has vectors, the vector_locator field specifies the position of the vector in the
interrupt tables, using macro IVCL (dev). If the device has static interrupt vectors, they are
specified by the DIB vector field and by the DIB num_vectors field. The device is assumed to
have vectors at vector, …, vector + ((num_vectors –1) * 4). If the device has dynamic interrupt
acknowledge routines, they are specified by the DIB interrupt acknowledge routines. An calling
sequence for an interrupt acknowledge routine is:

 int32 iack_rtn (void)

It returns the interrupt vector for the device, or 0 if there is no interrupt (passive release).

3.3.2 Massbus Devices (PDP-11, VAX-780 only)

For Massbus devices, I/O dispatching is done by table-driven address decoding in the Massbus
adapter (RH for the PDP11, MBA for the VAX-780). These tables are constructed at run time
from device information blocks (DIB’s). Each Massbus device has a DIB with the following
information:

 { Massbus number, 0, mb_read_routine, mb_write_routine,
 0, 0, 0, { &abort_routine } }

The calling sequence for a Massbus register read is:

 t_stat mb_read_routine (int32 *data, int32 offset, int32 drive)

The calling sequence for a Massbus register write is:

 t_stat mb_write_routine (int32 data, int32 offset, int32 drive)

For both, offset is the internal register offset of the Massbus register being accessed, and drive is
the unit number of the Massbus controller being accessed. These routines can return the
following status values:

 SCPE_OK access ok
 MBE_NXD non-existent drive
 MBE_NXR non-existent register
 MBE_GOE error attempting to initiate function

The abort routine is called if the Massbus adapter must stop a data transfer or reset the
associated controllers. Its calling sequence is:

 t_stat mba_abort (void)

The abort routine typically invokes the device reset routine to stop all transfers and reset all
device controller state.

3.4 DEVICE Context and Flags

For the PDP-11, VAX, and PDP-10, the DEVICE ctxt (context) field must point to the device
information block (DIB), if one exists. The DEVICE flags field must specify whether the device is
a Unibus device (DEV_UBUS); a Qbus device with 22b DMA capability, or no DMA capability
(DEV_QBUS); or a Qbus device with 18b DMA capability (DEV_Q18); a Massbus device
(DEV_MBUS); or a combination thereof. The DEVICE flags field must also specify whether the
device supports the “SET ENABLED/SET DISABLED” commands (DEV_DISABLE). Lastly, the

DEVICE flags field specifies whether the device addresses and vectors are autoconfigured
(DEV_FLTA).

Most devices do not care whether the I/O bus is Unibus or Qbus. Those that do can use macro
UNIBUS to see if the host bus is Unibus (true) or Qbus (false). On the PDP-11, UNIBUS is
derived from the CPU model; on the PDP-10 and VAX-11/780, it is always true; and for CVAX, it
is always false.

3.5 Memory Access Routines

3.5.1 Unibus/Qbus Devices

Unibus/Qbus DMA devices access memory through four interface routines:

int32 Map_ReadB (t_addr ba, int32 bc, uint8 *buf);
int32 Map_ReadW (t_addr ba, int32 bc, uint16 *buf);
int32 Map_WriteB (t_addr ba, int32 bc, uint8 *buf);
int32 Map_WriteW (t_addr ba, int32 bc, uint16 *buf);

The arguments to these routines are:

 ba starting memory address
 bc byte count
 *buf pointer to device buffer

Note that the PDP-10 can only share a small number of PDP-11 peripherals, because of its
dependence on 18b transfers on the Unibus; and that all non-Massbus peripherals are on Unibus
3.

The routines return the number of bytes not transferred: 0 indicates a successful transfer.
Transfer failures can occur if the mapped address uses an invalid mapping register or maps to
non-existent memory.

3.5.2 Massbus Devices

Massbus devices access memory through three interface routines, for read, write, and write
check respectively:

int32 mba_rdbufW (uint32 mbus, int32 bc, uint16 *buf);
int32 mba_wrbufW (uint32 mbus, int32 bc, uint16 *buf);
int32 mba_chbufW (uint32 mbus, int32 bc, uint16 *buf);

The arguments to these routines are:

 mbus Massbus adapter number
 bc byte count
 *buf pointer to device buffer

The routines the number of bytes successfully transferred. Transfer failures can occur if a
mapped address uses an invalid mapping register, maps to non-existent memory, or on a write-
check, if a miscompare occurs.

3.6 Adding A New I/O Device

3.6.1 Defining The I/O Page Region

I/O page regions are defined by a base address and a byte length. The base address is defined
as an offset against the I/O page base address (IOPAGEBASE). These definitions are kept in
pdp11_defs.h (vaxmod_defs.h). For example, if a new IPL 4 device has I/O addresses
17777700-17777707:

#define IOBA_NEWIPL4 (IOPAGEBASE + 017700) /* base addr */
#define IOLN_NEWIPL4 010 /* length = 8 bytes */

Note that the offsets are always the low order 13b of the I/O address, because the I/O page is
only 8KB long.

3.6.2 Defining The Device Parameters

If the device can interrupt, pdp11_defs.h (vaxmod_defs.h, vax780_moddefs.h, pdp10_defs.h)
must be modified to add the device interrupt flag(s) and priority level. The device flag(s) should
be inserted using a spare bit (or bits) at the appropriate priority level. On the PDP-11, the PIRQ
interrupt flags (PIR) must always be the last (lowest priority) device in the level.

/* IPL 4 devices */

#define INT_V_LPT 4
#define INT_V_NEW 5 /* new IPL 4 dev */
#define INT_V_PIR4 6 /* used to be 4 */
:
#define INT_NEW (1u << INT_V_NEW)
:
#define IPL_NEW 4

The device vector(s) must also be defined:

#define VEC_NEW 0360

If the device participates in autoconfiguration, its rank must be specified as well:

#define RANK_DEV 17 /* rank 17 */

3.6.3 Adding The Device Information Block

The device information block is declared in the device module, as follows:

t_stat new_rd (int32 *data, int32 addr, int32 access);
t_stat new_wr (int32 data, int32 addr, int32 access);
int32 new_iack1 (void);
int32 new_iack2 (void);
:
DIB new_dib = { IOBA_NEW, IOLN_NEW, &new_rd, &new_wr,

num_vectors, IVLC (NEW), VEC_NEW, { &new_iack1, &new_iack2, … };

3.6.4 Adding The Device To Autoconfiguration (PDP-11, VAX, VAX-780 only)

If the device needs to be autoconfigured, and it is not presently included in the autoconfiguration
table, it must be added to table auto_tab in pdp11_io.c (vax_io.c). Entry ‘n’ in auto_tab
corresponds to autoconfiguration rank n + 1; the first two fields of the entry are filled in. The fields
are:

 uint32 amod address modulus

 uint32 vmod vector modulus
 uint32 flags flags
 uint32 num number of controllers if determined statically
 uint32 fix CSR address if first controller has fixed address
 char *dnam[4] list of controller names in this rank, maximum 4

Currently defined flags are AUTO_DYN (number of controllers is determined dynamically) and
AUTO_VEC (autoconfiguration determines the device vectors as well as the device addresses).

4 Nova

4.5 CPU and I/O Device Structures

Simulated memory is kept in array uint16 M[MAXMEMSIZE].

The interrupt structure is implemented in three parallel variables:

• int32 int_req: interrupt requests. The two high order bits are the interrupt enable flag and
the interrupts-not-deferred flag

• int32 dev_done: device done flags
• int32 dev_disable: device interrupt disable flags

Pictorially,

 +----+----+…+----+----+…+----+----+----+
 |ion |indf| |irqa|irqb| |irqx|irqy|irqz| irq_req
 +----+----+…+----+----+…+----+----+----+

 +----+----+…+----+----+…+----+----+----+
 | 0 | 0 | |dona|donb| |donx|dony|donz| dev_done
 +----+----+…+----+----+…+----+----+----+

 +----+----+…+----+----+…+----+----+----+
 | 0 | 0 | |disa|disb| |disx|disy|disz| dev_disable
 +----+----+…+----+----+…+----+----+----+

 <- fixed -> <------- I/O devices ------>

Logically, the relationship is

 int_req = (int_req & ~INT_DEV) | (dev_done & ~dev_disable);

Device enable flags are kept in iot_enb. The device enable flag, by convention, is the same bit
position as device interrupt flag.

I/O dispatching is indirectly through dispatch table dev_table, which has one entry for each
possible I/O device. Each entry is a structure of the form:

 int32 mask; /* interrupt/done mask bit */
 int32 pi; /* PI out mask bit */
 t_stat (*iot_routine)(); /* addr of I/O routine */

The I/O routine is called by

 new_data = iot_routine (IOT pulse, IOT subopcode, AC value);

where

 new_data<15:0> = new contents of AC, if DIA/DIB/DIC
 new_data<IOT_V_SKP> = 1 if skip, 0 if not
 new_data<31:IOT_V_REASON> = stop code, if non-zero

4.6 DEVICE Context and Flags

The DEVICE ctxt (context) field must point to the device information block (DIB), if one exists.
The DEVICE flags field must specify whether the device supports the “SET ENABLED/SET
DISABLED” commands (DEV_DISABLE). If a device can be disabled, the state of the device
flag<DEV_DIS> must be declared as a register for SAVE/RESTORE.

4.7 Memory Mapping

On mapped Nova’s and on Eclipse’s, DMA transfers use a memory map to translate 15b virtual
addresses to physical addresses. The mapping function is called by:

int32 MapAddr(int32 map, int32 addr)

with the following arguments:

 map map number, usually 0
 addr virtual address

The routine returns the physical address to be used for the transfer.

4.8 Adding A New I/O Device

4.8.1 Defining The Device Number And The Done/Interrupt Flag

Module nova_defs.h must be modified to add the device number definitions and the device
interrupt flag definitions.

#define DEV_NEW 0nn /* can’t be 00, 01 */

Device flags are kept as a bit vector. If priority is unimportant, the device flag can be defined as
one of the currently unused bits:

#define INT_V_NEW 1 /* new */
:
#define INT_NEW (1 << INT_V_NEW)

If the device requires a specific priority with respect to existing devices, it must be assigned the
appropriate flag bit, and the other device flag bits moved up or down.

The device’s PI mask bit must also be defined:

#define PI_NEW 000200

4.8.2 Adding The Device Information Block

The device information block is declared in the device module, as follows:

int32 iot (int32 pulse, int32 code, int32 AC);
:

DIB new_dib = { DEV_NEW, INT_new, PI_new, &iot };

	Adding An I/O Device To A SIMH Virtual Machine

