
SIMH: Forward...
Into The Past
Bob Supnik, VP, Sun Microsystems

2

Contents

• An introduction to SIMH
• Rationale
• SIMH's development history
• The role of the Internet
• SIMH design principles
• Building a simulator
• The computer history ecosystem
• Demonstrations
• Going forward

3

What is SIMH?

• SIMH is an Internet-based collaborative project focused
on preserving computers (and software) of historic
interest via simulation

• SIMH consists of
– A portable application framework for implementing simulators
– Portable implementations of 20+ simulators on this framework
– Demonstration software to run on these simulators
– Papers and presentations documenting interesting facts and tidbits

gleaned from the simulators

• On the Web at http://simh.trailing-edge.com

4

Portability

• SIMH runs on
– X86 Linux, NetBSD, OpenBSD, FreeBSD (gcc)
– X86 Windows 95, Windows 98, Windows 2000, Windows XP (Visual

C++ or MingW)
– WindowsCE
– Mac OS/9 (Codewarrior) or OS/X (Apple Development Tools)
– Sun Solaris (gcc)
– HP/UX (gcc)
– AIX (gcc)
– Alpha Unix (DEC C)
– VAX/VMS, Alpha/VMS, IA64/VMS (DEC C)
– OS/2 (gmx)

5

Scope

• SIMH implements simulators for
– Data General Nova, Eclipse
– Digital Equipment Corporation (DEC) PDP-1, PDP-4, PDP-7, PDP-8,

PDP-9, PDP-10, PDP-11, PDP-15, VAX
– GRI-909
– IBM 1401, 1620, 1130, System/3
– Hewlett-Packard (HP) 2116, 2100, 21MX
– Interdata (Perkin-Elmer) 16b, 32b architectures
– Honeywell H316/H516
– MITS Altair 8800, both 8080 and Z80 versions
– Royal-McBee LGP-30, LGP-21
– Scientific Data Systems SDS-940

• More than two dozen machines in all
• Rather biased towards East Coast USA...

6

Software

• With SIMH, you can run
– PDP-1 Lisp and DDT, early interactive systems
– PDP-11 Unix V5, V6, V7, the earliest extent releases of Unix (V1 to V4

are lost)
– Interdata 7/32 Unix V6, the first port of Unix (and the first port to a 32b

system)
– PDP-10 TOPS-10, TOPS-20, ITS
– PDP-11 DOS, RT-11, RSX-11M, RSX-11M+, RSTS/E
– PDP-15 ADSS-15, F/B-15, DOS-15, DOS/XVM
– PDP-8 OS/8, TSS-8, ETOS, DMS
– VAX/VMS, VAX/Ultrix, VAX/BSD, VAX/NetBSD
– Nova RDOS, Eclipse AOS
– HP DOS, RTE-III, RTE-IV
– MITS Altair CP/M, DOS
– System/3 SCP, CMS

7

Rationale

• Computing’s past is disappearing
– As machines are scrapped, software and documentation is thrown out,

media becomes unreadable, and industry pioneers die

• The Santayana principle
– “Those who do not study the past are condemned to repeat it”
– Hardware and software engineers re-invent the breakthroughs (and

mistakes) of the past because they don’t know what they are
– What’s the difference between optimizing for the 8KW of a PDP8 and

the 8KW of a microprocessor’s first level cache? (Answer: no one does
the second)

• The relative lifespans of hardware, software, and data
– Hardware and architectures come and go
– Software and data have much longer duration: 15-50 years
– What will run the BART signs when the last PDP-8 breaks down?

8

No, No, Why Those Systems?

• The LGP-30 was the first computer I ever saw
• The IBM 1620 was the first computer I ever programmed
• The PDP-7 and the PDP-8 were the first computers I

wrote complete projects for
• The Nova was the first computer I did a complete system

design for
• The GRI-909 was the weirdest architecture I ever wrote

code for (one instruction)
• I’ve always had a sneaking fondness for 24b machines

(there were never any successful ones)
• I worked at DEC for 22 years

9

And Why Did You
Really Write SIMH?

• Larry made me do it
– Larry Stewart, DEC Research, pointed out in 1993 that computing's past

was being lost and suggested I do something about it

• I needed to graduate from programming in assembly
code and microcode
– With Alpha, availability of VAXen was beginning to decrease

• It seemed like a good idea at the time
– I hadn't done a major software project since porting Dungeon to the

PDP-11 (in the late 70's)
– I needed an excuse to learn C

• Besides, how difficult could it be to write a simulator?
– 11 years and 125K lines of code later…

10

Project Goals

• Goal: make computers and software of historic interest
accessible to a broad technical population
– Simulators, rather than restored hardware
– Highly portable (at least VMS, UNIX, and Win32)

• Starting point: MIMIC, an RTL simulation system from
the late 60's and early 70's
– Theft (of one's own prior work) is the highest form of productivity

• Initial targets: well documented minicomputers
– DEC PDP-8, PDP-11
– Data General Nova

• One man, one code base
• Then came the Internet...

11

SIMH And The Internet

• The Internet has turned out not be a “global city” but a
million global villages, and computer history is one of its
communities

• Initial contacts through newsgroups and mailing lists
• The Web made the activities of collectors and hobbyists

visible and accessible
– Document repositories
– Simulation systems
– Software stashes

• As a result, SIMH morphed from a one-person hobby
project to a collaborative effort of more than 30 people

• Most of us have never met IRL

12

The Computer History Ecosystem

• Private collectors
– Sometimes there’s no substitute for real hardware

• Document archivists
– Bringing the written word on-line

• Simulator writers
– SIMH, MAME, Hercules, CyberCray, and many, many others

• Restoration projects
– Rhode Island Computer Museum PDP-9, La Cite des Sciences et

L'Industrie PDP-9, Computer History Museum PDP-1 and 1620

• Institutions
– Computer History Museum, RICM/RICS

• Ebay
– Ultimately, everything is put up for sale

13

SIMH and The Internet: Recovering
Software for the 18b PDP’s

Documentation,
simulator, debug

Documentation,
working system

Documentation,
DOS/XVM media

Documentation,
ADSS/FB media

Working system,
ADSS boot, DOS

media, DOS debug

Tom_Lehrer_Plagiarize.mp3

7-track tape
transcription

PDP-7 software
on 7-track tape

PDP-15 paper-
tape software

14

SIMH Design Principals

• Simulators are collections of devices (the CPU is just a
device that executes instructions)

• Devices contained named registers, which hold state,
and numbered units, which contain data sets
Framework Simulator Control Package

CPU Device Device Device

registers

data data data

Unit Unit Unit

registers

Unit

Devices

Registers

Units

memData Sets

15

Design Principals, continued

• Data sets are mapped into a uniform set of host system
containers
– Containers can be in memory (arrays) or on disk (files)
– Containers are constrained to “natural” size boundaries (e.g., a 12b

memory is mapped as a 16b array or file)

• Asynchronous behaviour is modelled explicitly
– Time tracked in convenient units (nanoseconds, instructions, etc)
– Device events are scheduled for “future time”
– Simulator calls a device event handler at appropriate point

• Common devices classes are implemented through
libraries that hide host OS dependencies
– Libraries for disks, tapes, terminal multiplexers, Ethernet
– Future extensions will support graphics, “raw” device access

16

Writing A Simulator:
A Three Step Program

• Step 1 – research
• Gather as much documentation as possible

– Primary documentation (maintenance manuals, print sets, microcode
listings) are preferable to secondary sources (handbooks, user's guides,
prior simulators)

• Make contact with actual users
– Folklore can be as important as the printed word

• Gather and transcribe required software
– Diagnostics, operating system(s), application code

• RTFM (both the target system's and SIMH's)
• The Internet provides a wide variety of starting points for

gathering information

17

Writing A Simulator, continued

• Step 2 – implementation
• Critical design decisions

– How will instructions be decoded and executed?
• Modern computers are fast, don't waste time on optimization

– How will the I/O subsystem be modelled?
• Typically, the more accurately the better

– How will interrupts and exceptions be handled?
• Typical hardware mechanisms, like microtraps, are easily

implemented with longjmp and poorly implemented with try-except-
finally

– What debugging facilities should be included?
• These will be used to debug the simulator, not new programs

• There are plenty of examples to emulate (or borrow)

18

Writing A Simulator, continued

• Step 3 – debug
– Hand test cases, to get out the stupid bugs
– Diagnostics, to get out the straightforward bugs
– Operating systems, to get the details right

• Successful operating system and application operation is
the only real proof of completion

• Operating systems make excellent go/no-go diagnostics,
but their reporting mechanisms (crash, hang) leave
something to be desired

• A typical “large” simulator seems to have ~100 bugs
– The last 20 have to be found with operating system software

• Hence, the need for strong simulator debug tools (step,
save and repeat, breakpoints, traces, etc)

19

The Devil Is In The Details

• Writing and debugging a simulator can resemble
detective work more than software engineering
– Hardware documentation may be incomplete
– Hardware documentation may be misleading or false
– Software may be incomplete
– Software paths may be untested
– Simulated configurations may be untested
– Software may have undocumented timing dependencies
– Software may have undocumented hardware dependencies

20

Making The Right Tradeoffs

• Accuracy is more important than performance
– Implement a specific system, not an architecture
– Model the hardware accurately at the “black box” level
– Follow the microcode (if applicable and available) or the logic prints
– Include the fine-grain details

• Allow for “real-world” interactions
– Wall-clocks vs simulated clocks
– Timing loops and real-time devices

• Be prepared to “scale out”
– Users may not be satisfied with real-world speeds and feeds

21

Demonstrations

• PDP-11 Unix V5 – the earliest extent Unix

• Interdata Unix V6 – the first port, the first 32b Unix

• PDP-10 TOPS-10 – a timesharing bureau on your laptop

• VAX/VMS – 6 9's availability for your PC

22

SIMH In The Real World

• SIMH has grown steadily in scope, scale, and complexity
– 1996: 6 simulators; today: 24 simulators
– 1996: 12b and 16b systems; today: up to 32b (with 64b to follow)
– 1996: 2 host platforms; today: 18 host platforms

• SIMH is being used beyond the hobbyist community
– As the development platform for PDP-11 OS development
– As a replacement VAX platform in a government software development

program (reduced build cycles from 135 minutes to 14 minutes)

• Future releases will allow more “real world” interactivity
– Graphics
– Access to additional real devices on the host system

23

What You Can Do

• Check your attic (or your father’s… or grandfather’s)
– Lots of equipment, media, software, documentation still in private hands
– The greatest risk is simple discarding of “unimportant” artefacts
– If in doubt, consult the Computer History Museum

• Write (or adopt) a simulator
– Lots of interesting machines still to do
– Lots of simulators sitting in unfinished or untested state
– You never forget your first computer (much as you'd like to)

• Get involved!
– Preservation of computing’s history depends more on individuals than on

institutions or governments

	SIMH: Forward...Into The PastBob Supnik, VP, Sun Microsystems
	Contents
	What is SIMH?
	Portability
	Scope
	Software
	Rationale
	No, No, Why Those Systems?
	And Why Did YouReally Write SIMH?
	Project Goals
	SIMH And The Internet
	The Computer History Ecosystem
	SIMH and The Internet: RecoveringSoftware for the 18b PDP’s
	SIMH Design Principals
	Design Principals, continued
	Writing A Simulator:A Three Step Program
	Writing A Simulator, continued
	Writing A Simulator, continued
	The Devil Is In The Details
	Making The Right Tradeoffs
	Demonstrations
	SIMH In The Real World
	What You Can Do

