
The SIMH Breakpoint Subsystem
Bob Supnik, 26-Jul-2003 (revised 18-Jan-2006)

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2006, written by Robert M Supnik
Copyright (c) 1993-2006, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M
SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from Robert M Supnik.

Summary

SIMH provides a highly flexible and extensible breakpoint subsystem to assist in
debugging simulated code. Its features include:

• Up to 26 different kinds of breakpoints
• Unlimited numbers of breakpoints
• Proceed counts for each breakpoint
• Automatic execution of commands when a breakpoint is taken

If debugging is going to be a major activity on a simulator, implementation of a
full-featured breakpoint facility will be of immense help to users.

Breakpoint Basics

SIMH breakpoints are characterized by a type, an address, a class, a proceed
count, and an action string. Breakpoint types are arbitrary and are defined by the
virtual machine. Each breakpoint type is assigned a unique letter. All simulators
to date provide execution (“E”) breakpoints. A useful extension would be to
provide breakpoints on read (“R”) and write (“W”) data access. Even finer
gradations are possible, e.g., physical versus virtual addressing, DMA versus
CPU access, and so on.

Breakpoints can be assigned to devices other than the CPU, but breakpoints
don’t contain a device pointer. Thus, each device must have its own unique set
of breakpoint types. For example, if a simulator contained a programmable
graphics processor, it would need a separate instruction breakpoint type (e.g.,
type G rather than E).

The virtual machine defines the valid breakpoint types to SIMH through two
variables:

sim_brk_types – initialized by the VM (usually in the CPU reset routine)
to a mask of all supported breakpoints; bit 0 (low order bit) corresponds to
type ‘A’, bit 1 to type ‘B’, etc.

sim_brk_dflt – initialized by the VM to the mask for the default breakpoint
type.

SIMH in turn provides the virtual machine with a summary of all the breakpoint
types that currently have active breakpoints:

sim_brk_summ – maintained by SIMH; provides a bit mask summary of
whether any breakpoints of a particular type have been defined.

When the virtual machine reaches the point in its execution cycle corresponding
to a breakpoint type, it tests to see if any breakpoints of that type are active. If
so, it calls sim_brk_test to see if a breakpoint of a specified type (or types) is set
at the current address. Here is an example from the fetch phase, testing for an
execution breakpoint:

 /* Test for breakpoint before fetching next instruction */

 if ((sim_brk_sum & SWMASK (‘E’)) &&

 sim_brk_test (PC, SWMASK (‘E’))) <execution break>

If the virtual machine implements only one kind of breakpoint, then testing
sim_brk_summ for non-zero suffices. Even if there are multiple breakpoint types,
a simple non-zero test distinguishes the no-breakpoints case (normal run mode)
from debugging mode and provides sufficient efficiency.

Testing For Breakpoints

Breakpoint testing must be done at every point in the instruction decode and
execution cycle where an event relating to a breakpoint type occurs. If a virtual
machine implements data breakpoints, it simplifies implementation if data reads
and writes are centralized in subroutines, rather than scattered throughout the
code. For this reason (among others), it is good practice to perform memory
access through subroutines, rather than by direct access to the memory array.

As an example, consider a virtual machine with a central memory read
subroutine. This routine takes an additional parameter, the type of read (often
required for memory protection):

 #define IF 0 /* fetch */
 #define ID 1 /* indirect */
 #define RD 2 /* data read */
 #define WR 3 /* data write */

 t_stat Read (uint32 addr, uint32 *dat, uint32 acctyp)
 {
 static uint32 bkpt_type[4] = {
 SWMASK (‘E’), SWMASK (‘N’),
 SWMASK (‘R’), SWMASK (‘W’) };

 If (sim_brk_summ &&

 sim_brk_test (addr, bkpt_type[acctyp]))
 return STOP_BKPT;
else *dat = M[addr];
return SCPE_OK;
}

This routine provides differentiated breakpoints for execution, indirect addresses,
and data reads, with a single test.

The Replay Problem and Breakpoint Classes

When a breakpoint is taken, control returns to the SimH control package. When
execution resumes, the same breakpoint will be reached and taken. This could
result in an endless loop, with the simulator never progressing beyond a
breakpoint.

When a breakpoint is taken, SimH remembers the address of the breakpoint and
sets an internal flag. If the next breakpoint test is to the same address, SimH
suppresses the breakpoint and clears the internal flag. Thus, the simulator can
make progress past the breakpoint but will take the breakpoint again if control
returns to the same address.

Unfortunately, this simple scheme won’t work if a simulator implements multiple
breakpoint types, and multiple breakpoints occur within the same instruction.
Suppose a simulator implements E, R, and W breakpoints, and an instruction
triggers an E breakpoint when fetched and an R breakpoint when executed.
SimH will loop endlessly:

• Fetch instruction, take E breakpoint (saved address is instruction)
• Continue
• Fetch instruction, suppress E breakpoint, take R breakpoint (saved

address is data address)
• Continue
• Fetch instruction, take E breakpoint
• Continue
• Fetch instruction
• Take R breakpoint, etc

To help with these loops, SimH implements up to 64 breakpoint classes. Each
breakpoint class has its own saved address and valid flag. Thus, if the E, R, and
W breakpoints are assigned to separate classes, each will be suppressed in turn
until the next breakpoint test on that class that fails or that uses a different
address.

Breakpoint classes are arbitrary identifiers and can be assigned by the simulator
writer as desired. The class is specified as part of the breakpoint type in the call
to sim_brk_test:

 <31:26> = class number (0 by default)
 <25:0> = bit mask of breakpoint types

Note that breakpoint classes and breakpoint types are orthogonal. Thus, classes
can be used to distinguish different cases of the same breakpoint type. For
example, in an SMP system with ‘n’ processors, classes 0..n-1 could be used for

E-breakpoints for processors 0..n-1. Or in a VAX, classes 1..6 could be used for
data breakpoints on operands 1..6, with 0 reserved for the CPU’s E-breakpoints.

SimH’s capability to remember (and suppress) breakpoints on a class basis
requires the simulator’s cooperation in some cases. Consider the following loop
from an 18b PDP system:

 LAC FLAG
 SNA
 JMP .-2

If a data breakpoint is set on FLAG, it will not be sprung on alternate instances,
because SimH remembers the address of flag and the prior breakpoint. The
simulator must inform SimH that instruction execution has completed and that
any remembered breakpoint addresses for the data breakpoint class should be
forgotten. SimH supplies an API call to do this:

 sim_bkpt_clrspc (uint32 class)

Routine sim_bkpt_npc (void) will clear all remembered addresses, but this call
incurs substantial overhead and should not be used routinely.

	The SIMH Breakpoint Subsystem
	Summary
	Breakpoint Basics
	Testing For Breakpoints
	The Replay Problem and Breakpoint Classes

