
PDP-11 Interrupts: Variations On A Theme
Bob Supnik, 03-Feb-2002 [revised 20-Feb-2004]

Summary

Despite the presence of documented standards and example implementations,
PDP-11 devices showed significant variability in implementing interrupts. While
some of these variations were nearly invisible or harmless, others required
explicit support or workarounds in device drivers. Consequently, PDP-11
emulators must model device interrupt control with great care.

The “Standard” Implementation

Until the advent of message-oriented devices like the TS11 and the MSCP
controllers, all PDP-11 devices contained a “control/status register”. The CSR
contained a device ready flag in bit <7> and an interrupt enable flag in bit<6>
(other common assignments were error summary in bit<15> and go in bit<0>):

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
E
R
R

 R
D
Y

I
E

 G
O

The device’s interrupt request was implemented with an edge sensitive flip-flop.
INTR was set by the rising edge of the logical AND of RDY and IE; it was cleared
by device initialization or by interrupt acknowledge; and its output was masked by
the logical AND of RDY and IE. The entire circuit required just two AND gates
and a JK flip flop:

 +-----+ |--\
 |--\ +5V--|D 1|-----| |
RDY ---| | | | | |--- INTERRUPT REQUEST
 | |---+---|C | +--| |
IE ---| | | +--^--+ | |--/
 |--/ | | |
 +------|-----+
 |
INIT + IAK -----------+

Behaviorally,

- A transition of RDY AND IE from 0 to 1 set the interrupt request.
- Granting the request, or initializing the device, cleared the interrupt request.
- Clearing either RDY or IE blocked the interrupt request. This cannot be

distinguished from clearing the request.

This circuit is presented in all the standard Unibus handbooks and is included in
all the early PDP-11 device controllers, such as the PC11 (paper tape), DL11
(serial line), and RK11 (cartridge disk). The circuit was reduced to silicon in the
Qbus interrupt logic chip (DC003).

Variations

As the TTL logic family broadened, variations began to appear in the interrupt
circuitry. The standard implementation seemed overly general. While it made
sense to request an interrupt on the rising edge of RDY, why request an interrupt
on the rising edge of IE? The following variation began to appear:

 +-----+ |--\
IE--+-------|D 1|-----| |
 | | | | |--- INTERRUPT REQUEST
 | RDY--|C | +--| |
 | +--^--+ | |--/
 | | |
 +----------|-----+
 |
INIT + IAK ----+

If IE was set, the rising edge of RDY requested an interrupt. Once the interrupt
was set, clearing IE would block the interrupt request. As before, both device
initialization and interrupt acknowledge cleared the interrupt request.

This variation apparently saved a gate with no impact on function. But it had one
peculiarity: an interrupt request, once set, could not be cleared by program
action. Clearing IE did not actually clear the interrupt request; more importantly,
clearing RDY neither cleared nor blocked the interrupt request. The seeds for
future confusion were sewn.

The RH70 and RH11

The Massbus controllers took the circuit variant described above, added an
additional “feature”, and in doing so created something unique. Disk controllers
have always had an issue in handling overlapped seeks on multiple units.
Software would like to have an interrupt for each distinct operation; but to
multiplex all the seek complete interrupts, and the controller complete interrupt,
onto a single interrupt request line requires complex mechanisms like unit polling,
as in the RK11. Without this mechanism, software must time overlapped seeks,
as in the RL11.

The Massbus designers proposed a simple hardware-software combination to
handle this problem. Each disk drive would have an “attention” (ATA) flag.

Provided that the controller was enabled for interrupts and was not performing a
data transfer, the controller would request an interrupt if any ATA flag was set.
The software driver would have to clear the ATA flag of the drive requesting
attention. Thus, ATA interrupts behaved like the level-sensitive interrupts of the
PDP-8 and PDP-15.

To implement this additional class of interrupt, the Massbus controller simply
OR’d the ATA interrupt requests with the output of the RDY interrupt circuit. But
because the ATA request already included IE, and the RDY circuit gated IE, it
omitted the final AND with IE:

 +-----+ |--\
IE----------|D 1|----- \ \
 | | | >--- INTERRUPT REQUEST
RDY---------|C | +-- / /
 +--^--+ | |--/
 | |
ATA + RDY + IE-------+
 |
INIT + IAK ----+

Now here was a circuit with truly peculiar properties. A transition of RDY from 0
to 1 with IE set latched an interrupt request. This request not only couldn’t be
cleared by program action; it couldn’t be blocked by software action. That is,
once the interrupt request was latched, clearing IE did not prevent the interrupt
from happening! This inexcusable mistake didn’t even save gates; the correct
implementation required only a 3-input AND gate in place of the 3-input OR gate:

 +----------------------------+
 | +-----------------------+ |
 | | | | |--\
 | | +-----+ |--\ | +--| |
IE--+--|----|D 1|----- \ \ +----| |-- INTR REQUEST
 | | | | >------| |
RDY----+----|C | +-- / / |--/
 +--^--+ | |--/
 | |
ATA -----------------+
 |
INIT + IAK ----+

With this implementation, RDY interrupt would have behaved like “classical”
PDP-11 edge-sensitive interrupts, while ATA would be a level-sensitive interrupt
conditioned on RDY and IE.

DEC drivers didn’t utilize the peculiarities of the RH70 and RH11, but UNIX
variants, such as Ultrix-11, did. Simulators attempting to model the RH series

controllers cannot running Ultrix-11 without mimicing the behavior of its interrupt
logic.

The DEUNA

The DEUNA shows that the advent of purpose-built IC’s did not fix the problem.
The DEUNA replaced the last AND gate of the classic implementation with the
DC013 Unibus grant controller chip:

 +-----+ +-----+
 |--\ +5V--|D 1|---| |
RDY ---| | | | |DC013|--- INTERRUPT REQUEST
 | |------|C | | |
IE ---| | +--^--+ +-----+
 |--/ |
 |
 |
INIT + IAK ----------+

Unfortunately, the DC013 had no enable input, only a request inputt. Thus, once
the DEUNA requested an interrupt, there was no programmatic way to remove it.
As with the RH11/RH70, simulators attempting to model the DEUNA must model
its incorrect interrupt behavior.

Acknowledgements

Joseph Young first diagnosed problems in the RH simulators running BSD 2.9
and 2.11 and pointed to the interrupt logic as the source. Tom Evans and Alan
Baldwin brought the DEUNA example to my attention.

	PDP-11 Interrupts: Variations On A Theme
	Summary
	The “Standard” Implementation
	RDY ---| | | | | |--- INTERRUPT REQUEST
	IE ---| | | +--^--+ | |--/

	Variations
	| | | | |--- INTERRUPT REQUEST
	| +--^--+ | |--/

	The RH70 and RH11
	| | | >--- INTERRUPT REQUEST
	+--^--+ | |--/
	| | | | >------| |
	+--^--+ | |--/

	The DEUNA
	RDY ---| | | | |DC013|--- INTERRUPT REQUEST
	IE ---| | +--^--+ +-----+

	Acknowledgements

