
Microcoding Considered

As A Fine Art

May 1988

Bob Supnik

For Internal Use Only



Introduction

If once a man indulges himself in microcoding, very soon he

comes to think little of assembly coding; and from assembly

coding he next comes to Fortran and Forth; and from that to

terse comments and goto statements.

Contents:

• Microcoding.

• Microarchitecture.

SEG/AFL Microcoding



Microcoding

• (Narrow) definition: Microcoding is the implementation of an

instruction set interpreter on a low-level hardware engine.

• Goals (descending priority):

– Accuracy.

– Performance.

– Schedule.

– Space.

– Maintainability.

• Non-goals:

– Plasticity.

– Modularity.

– Aesthetics.

SEG/AFL Microcoding



The Design Process

• Preparation - studies, prework.

• Comparative analysis - plagiarism no vice.

• Algorithm development - ways and means.

• Coding - implementation and documentation.

• Verification - functional, restrictive, dynamic.

• Optimization - squeezing the cycles.

SEG/AFL Microcoding



Preparation

• Study the target ISP; know the SRM cold:

– Complex instruction definitions.

– Interactions between specifiers and execution.

– Memory management.

– Interrupts and exceptions.

• Study the micromachine:

– Control and branching structure.

– Parallel capabilities.

– Serial restrictions.

– Duplicate facilities.

• Understand performance tradeoffs in the architecture.

• Set goals and priorities: space vs speed, etc.

• Establish conventions for coding.

• Choose tools for development and verification.

SEG/AFL Microcoding



Comparative Analysis

“Plagiarism is the highest form of flattery.”

• Study past implementations:

– Algorithms for complex instructions.

– Space vs speed tradeoffs.

– Features that worked especially well.

– Features that were not used.

– Utilization of parallelism.

– Bugs that escaped pre-PG verification.

• Study contemporaneous implementations:

– Study list is the same as given above.

– Establish contact with other microcode projects.

– Review others’ microcode as it is developed.

– Invite others to review the code.

SEG/AFL Microcoding



Algorithm Development

• Start with a baseline sketch, derived from:

– Simple implementation of SRM description.

– Direct translation of past implementation.

– Direct translation of contemporary implementation.

• Critique by constraints:

– Is decision tree compressed to minimum?

• Critique by comparison:

– Does it meet performance goals?

– Is it as fast, or faster, than past machines?

– Is it as fast, or faster, than contemporary machines?

• Critique by dead space:

– Are there NOPs?

• Examples: Rigel VFIELD, Rigel CSTRING.

SEG/AFL Microcoding



Coding

• Start with register allocation.

– Minimize (eliminate) data moves.

– Maximize use of common routines and common exits.

• NOPs are verboten!

– Shorten the decision tree.

– Push calculations up the tree.

– Use cases instead of compares.

– Add additional functions to fill slots.

• Think parallel.

– Multiple tests from one calculation.

– Multiple consequences of one action.

– Multiple interpretations of one result.

– Multiple actions on one source.

SEG/AFL Microcoding



Coding, continued

• Think hardware.

– What hardware features are not being used, and could be

eliminated?

– What microcode routines are not meeting goal, and could

use additional hardware support?

• Document, document, document!

– Introductions to entry points, algorithms, etc.

– Specialized comments on microcode restrictions.

– State description on every continuation page.

– Cycle counts for complex decision trees.

• Code review.

– When code is complete, or even before.

– Starting point is accuracy.

– Next issue is performance.

– Next issue is space.

– Subordinate points: reusability, allocation plasticity.

SEG/AFL Microcoding



Coding Examples

• Rigel VFIELD:

[SC] <-- 000000[32.] - [MD.T2], LONG

– Tests size > 32.

– Using SC case, tests size = 0.

• Rigel VFIELD:

[SC] <-- [MD.T0] - 000000[32.], LONG

– Tests position > 31.

– Loads position to SC (SC operates mod 32).

• Rigel QUEUE:

MEM(VA)&, [SC] <-- [MD.T0] - [SC], LONG

– Calculates result.

– Saves result for later use.

– Writes result to memory.

SEG/AFL Microcoding



Verification

• Functional verification:

– HCORE - for initial debug.

– AXE - for thorough coverage; use latest version, always!

– MAXE - for pipeline interactions.

– SEGUE - for pipeline interactions.

– ELN - a reasonably short OS test.

– VMS - the ultimate test.

• Restrictive verification:

– ARCS - microcode restrictions check.

• Dynamic verification:

– Check every error and exception path!

– Interrupts (regular and passive release).

– DMA and invalidates.

– Coincident transactions (prefetch+, invalidate +, error+),

etc.

SEG/AFL Microcoding



Optimization

• Microcode, like bread dough, needs to “rest” a while before being

worked again.

• After initial verification, take a break.

• Then look for “peephole optimizations”:

– Eliminate NOPs by restructuring, filling, etc.

– Eliminate STALLs by scheduling parallel work.

– Eliminate MOVEs by revised register allocation.

– Eliminate COMPAREs by cases.

– Eliminate duplicate actions.

– Eliminate words by finding common sequences.

– Eliminate words by finding one line subroutines.

– Eliminate allocation bottlenecks by alignlist strength reduc-

tion.

• The number of changes needed to free up a word or cycle may

be enormous!

SEG/AFL Microcoding



Optimization Examples

• RIGEL MISC: Eliminated two NOPs in INDEX by:

– Adding functionality (size = 1 test).

– Pushing calculation (subscript + size) up the tree.

– Casing into subroutine instead of calling.

– Saved multiple cycles, words too!

• RIGEL CALLRET: Eliminated cycle in CALLs by:

– Making one shift serve two purposes (align mask for call

frame, align mask for casing).

• RIGEL CALLRET: Eliminated STALL in RET by:

– Placing more work under LOAD PC shadow.

– Rewriting as needed to free up work for shadow.

• RIGEL MULDIV: Eliminated register copy in DIVIDE by:

– Noticing “useless” move on error path.

– Reallocating registers to eliminate move.

SEG/AFL Microcoding



Optimization Examples

• RIGEL OPSYS: Eliminated COMPAREs in CHMx by:

– Implementing full case tree for opcode vs current mode.

– Saved compare, extra data move.

– Eliminated “wrong choice” path.

– Saved 2+ cycles, no extra words.

• RIGEL MISC: Eliminated duplicate read in POPR:

– Prologue reads end of stack frame to test accessibility.

– Main loop unwinds mask bits <11:0>.

– Epilogue unwinds mask bits <14:12>.

– Reusing longword saves 3 words, can save cycles.

• RIGEL INTLOG: Eliminated words, cycles in ASHQ by:

– Noticing right shift case had extra cycle due to conflict be-

tween condition code order requirements and shift order re-

quirements.

– Reused MOVQ storage routine to set condition codes.

– Allowed shift to be done in optimized order.

SEG/AFL Microcoding



Random Thoughts

• Ordinary programming (systems or application) and microcod-

ing are very different.

– An ordinary program is implemented once, with a view to-

wards long term maintenance and modification.

– Microcode may be implemented many times, but once fin-

ished is complete.

– Microcode is hacking at its best: the last refuge of the as-

sembly language fanatic.

• The worst enemy of good microcode is NIH.

– Beg, borrow, and steal good ideas from others.

– Use others to review and critique code.

• Microcode demands optimization, and optimization demands

multiple passes.

– Multiple passes, dispersed in time, by the same person.

– Multiple reviewers, at the same time.

SEG/AFL Microcoding



Microarchitecture

• (Narrow) definition: Microarchitecture is the process of defining

a low-level hardware engine for a microcoded processor imple-

mentation.

• Goals (descending priority):

– Implementation feasibility.

– Performance.

– Implementation complexity.

– Schedule.

– Implementation cost.

• Non-goals:

– Extensibility.

– Reusability.

– Aesthetics.

SEG/AFL Microcoding



The Design Process

• Preparation - studies, prework.

• Comparative analysis - the state of the art.

• Microword development - trying out ideas.

• Tradeoffs - hardware cost and microcode cost.

• Formal definition - the final result.

SEG/AFL Microcoding



Preparation

• Study the SRM; how does the architecture impact hardware?

– Basic data path requirements (eg, GPRs, working registers,

ALU, shifter, condition codes, RLOG, etc).

– Specifier decomposition.

– Memory management.

– Interrupts and exceptions.

• Study the “fine print” backbreakers.

– Unaligned memory references.

– Conflicting specifier usage (eg, (R),(R)+).

– Double write specifiers.

– Implicit specifiers.

• Understand reliability and recoverability requirements for target

systems.

• Understand performance tradeoffs in the architecture.

• Set goals and priorities: cycle time, cpi, etc.

SEG/AFL Microcoding



Comparative Analysis

• Study past implementations:

– Data path facilities.

– Instruction parsing facilities.

– Memory management facilities.

– BIU structure.

– Cache and memory structures.

– Microcode structure (horizontal vs vertical, serial vs paral-

lel).

– Handling of architectural nasties.

– Performance return from individual features.

• Study contemporaneous implementations:

– Study list is the same as given above.

• Study hypothetical implementations:

– Cache and memory subsystem configurations.

– Theoretical limits on implementation efficiency.

SEG/AFL Microcoding



Microword Development

• Goal: first cut at a microword (E Box structure).

• Starting point: select a theme.

– MicroVAX - get it to fit (microword existed)!

– CVAX (first theme) - minimize microword count.

– CVAX (final theme) - minimize logic.

– Rigel - allow parallel E Box, BIU operations.

– NVAX - minimize cpi of complex instructions.

• Select a sequencing style.

• Code key routines in “free form” microcode.

– Specifiers.

– Integer/logical, control, field, procedure call.

• Derive minimum set of fields and functions per field.

• Define initial microword.

SEG/AFL Microcoding



Example: CVAX

• Initial CVAX goal was minimum number of microwords:

• Final CVAX goal was minimum amount of logic while maintain-

ing narrow microword:

– MicroVAX’ 9 data path formats reduced to 5.

– MicroVAX’ 32 destination selects reduced to 4.

– MicroVAX’ 32 branch conditions reduced to 16.

– MicroVAX’ 16 way cases reduced to 8, corresponding to hard-

ware organization of CS ROM.

– MicroVAX’ 9 literal formats reduced to 4.

– MicroVAX’ 8 CC recipes reduced to 4.

– MicroVAX’ 8 state flags reduced to 6.

– MicroVAX’ signed offset addr changed to page mode.

– MicroVAX’ conditional branches eliminated.

– Fields common to all formats always in same place.

– Memory request field horizontally encoded.

– Special control functions horizontally encoded.

– Duplicate data path functions eliminated.

– Microword grew from 39b to 41b.

SEG/AFL Microcoding



Example: Rigel

• Rigel goal was to augment CVAX with parallel MRQ and ALU

functions and to further simplify decoding:

– Combined MRQ/ALU format to support read and run.

– Also supports calculate and write.

– Destination select replaced by explicit destination field for

simpler decoding.

– Microword grew from 41b to 50b, since ROM width was no

longer much of a performance issue.

– Wider format allowed further simplification of shift format.

• The main challenge of Rigel was not in the data path but in the

sequencing.

– Micropipeline implied longer branch latencies.

– In particular, 1 cycle ALU latency grew to 3 cycles.

– Could the microcode cope with the extra latency?

– Feasibility proven by probe coding.

SEG/AFL Microcoding



Example: NVAX

• NVAX is a macropipelined machine.

• The largest irreducible component of cpi is complex instructions

which require the I Box to shut down during execution.

• Therefore, the goal of the (E Box) microarchitecture must be

mininized cpi.

• The Nautilus and Aquarius microcode are directly applicable.

• Possible I/O facilities:

– Automatic compaction of related writes into quadwords.

– I/O operation every cycle at external pins.

– Separate I and D (I/D) caches.

SEG/AFL Microcoding



Example: NVAX, continued

• Possible microcode facilities:

– Tailored ALU operations (eg, sign extend).

– Tailored shift operations (eg, sign extend).

– Parallel MRQ, ALU, SHF operations for maximum paral-

lelism.

– Tailored register operations (eg, byte writable PSL).

– Tailored branch conditions (eg, case on all interesting CALLx

mask bits).

– Special function units for complex instructions (eg, mask

unit, population counter, REI validator).

– Shortened microbranch latency.

– Microbranch tests at ALU/SHF input as well as output.

SEG/AFL Microcoding



Tradeoffs

Ultimately, every microarchitectural feature must be justified by

an SRM constraint or by a performance payback.

• All VLSI uVAXen have featured:

– Hardware implemented unaligned I/O.

– Narrow, horizontally encoded microwords.

– <2k word control store limit.

– 32b right funnel shifter.

– Multifunction SC register.

• Some CVAX tradeoffs:

– Opcode dependent ALU functions rejected.

– Per-instruction register optimization rejected.

– SC casing limited to bits <5:0>.

– SISR partially implemented in hardware.

– CC map select moved from IPLA to microword.

– Branch logic enhanced to support loop branches.

– Branches implemented via microtrap.

– 780-like I Box replaced by 8800-like I Box.

– VA on B Bus to speed up TB miss flows.

SEG/AFL Microcoding



Tradeoffs, continued

• Some Rigel tradeoffs:

– Per-instruction register optimization added.

– SC casing broaded to bits <11:0>.

– Population counter added.

– REI, mask validator rejected.

– SISR fully implemented in hardware.

– Edge triggered latches reset by microcode.

– Memory management length checks done in E Box.

– No static ALU condition codes.

– RLOG decoding done in hardware.

The list of decisions is endless.

SEG/AFL Microcoding



Formalization

• The tentative microword definition is checked for hardware im-

plementation feasibility.

– Ease of decoding and execution.

– Minimization of hardware maintained state.

– Effect on cycle time.

• The sketch feasibility microcode is fleshed out to be a full scale

trial implementation.

– Flushes out missing features for obscure cases.

– Ensures adequate facilities for exceptions.

• The trial implementation is used to drive a performance model

of the system, to validate performance goals.

• At the conclusion of performance modelling, the microcode def-

inition is tentatively frozen.

• But, there is always room for inventiveness, or catastrophe, to

strike.

SEG/AFL Microcoding



Concluding Thoughts

• Tbd.

SEG/AFL Microcoding


