
A Massbus Mystery, or,
Why Primary Sources Matter, Even In Computer History
Bob Supnik, 24-Sep-2004

Summary

In preparing a simulator for the VAX-11/780, I discovered that all the extant
printed documentation for the DEC RP04/RP05/RP06 controllers is incorrect.
Further, VMS followed this error in its drivers, creating a latent bug that has been
present since the first release of the operating system in 1977.

Background: The Massbus

The Massbus is a simple, 16b, high-speed interconnect between a CPU host
adapter and one or more mass storage devices. DEC created the Massbus in
the early 1970’s, to provide a CPU-to-mass-storage interconnect that was faster
than the Unibus. The Massbus was implemented in the PDP-11/70 (via the
RH70 host bus adapter) and the DECsystem-20 (via the RH20 host bus adapter).
The Massbus was the primary storage interconnect on the VAX-11/780 (via the
RH780 host bus adapter). Massbus storage could also be connected to Unibus
PDP-11’s (via the RH11 host bus adapter).

The Massbus implemented a very simple command and control structure
between the host bus adapter and devices. The host adapter maintained the
address and word count (DMA) logic. It communicated with the devices via
register reads and writes. The host adapter mapped host addresses either to
internal (adapter) registers offsets, or to external (device) register offsets. On the
PDP-11, this mapping was quite complicated, and a mapping PROM was used
between host addresses and register offsets; on the VAX, it was very simple,
with different partitions of the adapter’s address space being used for internal
offsets and external offsets.

RP vs RM, VAX vs PDP-11

The issue at hand arose in trying to understand how this mapping actually
worked across different Massbus storage devices, particularly the RP and RM
families of removable disk packs. The RP04/05/06 family came first, based on
buyout Memorex drives; the RM03/RM05/RP07 family (yes, the RP07 was an
RM, despite the name) came later, based on buyout CDC and ISS drives.
According to the maintenance manuals for the respective drive families [1,2], the
internal register offsets were not quite the same:

Offset10 RP family RM family

0 CS0 CS0
1 DS DS

2 ER1 ER1
3 MR MR
4 AS AS
5 DA DA
6 DT DT
7 LA LA
8 ER2 SN
9 OF OF
10 DC DC
11 CC HR
12 SN MR2
13 ER3 ER2
14 EC1 EC1
15 EC2 EC2

Because the RH780 didn’t map the external registers in any way, this difference
was also reflected in the VMS driver.

But the PDP-11 (RH70/RH11), which did map the registers, showed a different
picture:

Address8 RP family RM family

176700 CS0 CS0
176702 RH BA RH BA
176704 RH WC RH WC
176706 DA DA
176710 RH CS2 RH CS2
176712 DS DS
176714 ER1 ER1
176716 AS AS
176720 LA LA
176722 RH DB RH DB
176724 MR MR
176726 DT DT
176730 SN SN
176732 OF OF
176734 DC DC
176736 CC HR
176740 ER2 MR2
176742 ER3 ER2
176744 EC1 EC1
175746 EC2 EC2

The correspondence between RP and RM registers in the VAX and in the PDP-
11 is identical, except for RP SN, RM SN, RP ER2, and RM HR. If the VAX

offsets were correct, then somehow the RH70/RH11 was mapping 176730 to
offset 12 on the RP and offset 8 on the RM, and 176740 to offset 8 on the RP
and offset 12 on the RM. How could this be?

First Hypothesis: Magic In the RH70/RH11

My first hypothesis was that, somehow, the RH70/RH11 was generating different
mappings for the RP and RM drive families. Because this mapping was done
with a PROM [3], this hypothesis implied that the RH70/RH11 had to be
customized for the drive type. Further, RP and RM drives could not be mixed on
the same PDP-11 Massbus controller, because addresses 176730 and 176740
would be incorrectly mapped if the drive type and controller PROM didn’t match.

A Beautiful Theory vs Ugly Facts

This hypothesis was quickly overwhelmed by evidence from developers and
users. A typical response was from Paul Koning, from RSTS/E development.

“I'm somewhat puzzled about all this but I know for a fact that we
supported mixed configs, and we had all sort of odd mixes on our
development machines. Remember DECnet host ARK? It was called that
because it had "two of everything". (Eventually that was more than was
possible, but it had an amazing collection even so. I distinctly remember
RP04, RP06, RM03, and RP07 disks mixed on the two RH70s.)”

A perusal of the RSTS/E driver showed that of the suspect registers, SN and
MR2 were never accessed, and ER2 was only accessed if the drive was known
to be an RP. So even with scrambled numbering, mixed strings would work,
provided the RH70/RH11 always used an RP-style mapping.

TOPS-10 and TOPS-20 developers were even firmer: mixed configurations were
not only supported but routine. The only restriction was that disks and tapes
could not be mixed on the same Massbus adapter. The TOPS-10 and TOPS-20
drivers accessed SN and ER2 and expected them to be in their proper Unibus
locations.

Further, the TOPS-10 and TOPS-20 drivers for the RH20 (which, like the RH780
on the VAX, did not map device offsets) stated that the RP offset for SN was 8,
not 12, and for ER2 was 12, not 8.

TOPS-10 and TOPS-20 ran with real hardware; so too did VMS. Who was right?

Back To The Primary Source

At this point, the only remaining option was to consult the primary source for
computer designs: the schematics. Fortunately, the schematics for the

RP04/RP05/RP06 were online, in Al Kossow’s invaluable archive. The
schematics provided the answer.

The RP04/05/06 implemented register decoding with a 74154 4:16
demultiplexor. The selects were laid out in numeric order, with 8 = SN and 12 =
ER2 [4]. There were no jumpers or select swizzling logic, before or after the
demultiplexor. The PDP-11, TOPS-10, and TOPS-20 were right. The
RH70/RH11 needed only one, consistent mapping between host addresses and
Massbus offsets. The RP maintenance manual, and the VMS driver, were
wrong.

The Smoking Gun; And An Explanation

So how did VMS work? The answer couldn’t be simpler: although the register
offsets for SN and ER2 were defined, they were never used. It didn’t matter that
they were wrong; it was only a problem in the comments, not in functional
operation. The definitions were probably copied over on “day 1” from an
incorrect document (like the maintenance manual) and never changed.

As confirmation, the VMS error logging facility (ERF) differed from the driver.
The error logger stored the RP registers in numeric order, lowest to highest, and
then defined the following data structure to access the resulting information (I’ve
added the implicit register offsets to make the correspondence clearer):

{
{ RP04/5/6/7 Disk Device Error Sub-packets
{

Aggregate RP0X_DE_PKT structure prefix RP0X_DE$;
 MBA_REGS structure longword unsigned dimension 7; /* MBA adapter registers
 MBA_CNFG longword unsigned; /* Configuration register (RH780)
 MBA_CNTRL longword unsigned; /* Control register
 MBA_STAT longword unsigned; /* Status register
 MBA_VA longword unsigned; /* Virtual address register
 MBA_BYTE_CNT longword unsigned; /* Byte count register
 MBA_FNL_MAP longword unsigned; /* Final map register
 MBA_PRE_MAP longword unsigned; /* Previous map register
 End MBA_REGS;
0 CSR1 longword unsigned; /* RP04/5/6/7 control/status reg.
1 DRV_STAT longword unsigned; /* RP04/5/6/7 drive status register
2 ERROR1 longword unsigned; /* RP04/5/6/7 error register
3 MAINT longword unsigned; /* RP04/5/6/7 maintenance register
4 ATTN_SUM longword unsigned; /* RP04/5/6/7 attention summary reg.
5 D_ADDR longword unsigned; /* RP04/5/6/7 desired address reg.
6 DRV_TYP longword unsigned; /* RP04/5/6/7 drive type register
7 LOOK_AHEAD longword unsigned; /* RP04/5/6/7 look ahead register
8 SN longword unsigned; /* RP04/5/6/7 serial number register
9 OFFSET longword unsigned; /* RP04/5/6/7 offset register
10 D_CYL longword unsigned; /* RP04/5/6/7 desired cylinder addr.
11 CUR_CYL longword unsigned; /* RP04/5/6/7 current cylinder addr.
12 ERROR2 longword unsigned; /* RP04/5/6/7 error register 2
13 ERROR3 longword unsigned; /* RP04/5/6/7 error register 3
14 ECC1 longword unsigned; /* RP04/5/6/7 ECC position register
15 ECC2 longword unsigned; /* RP04/5/6/7 ECC pattern register
End RP0X_DE_PKT;

The error logger, which certainly did care about the definitions of SN and ER2,
had them in the correct (i.e., schematic) order.

Conclusions

In an article on SIMH in ACM Queue, I wrote,

“As in most forms of historical research, primary sources (schematics,
microcode listings, and maintenance documentation) are best; secondary
sources such as handbooks, marketing material, textbooks, and even user
manuals cannot be trusted.” [5]

As this Massbus mystery illustrates, the definition of primary sources has to be
narrowed further: even maintenance manuals cannot be trusted. Errors can pile
on errors over time: user manuals from maintenance manuals, drivers from user
manuals, etc. And only reference to the schematics can unravel a 25+ year old
error.

Acknowledgements

Paul Koning, Fred Van Kempen, Mark Crispin, Dave Carroll, and Joe Smith all
provided personal evidence that knocked down my first hypothesis and
eventually led me to look at the RP schematics. Andy Goldstein confirmed my
analysis of the VMS drivers. Al Kossow’s multi-year project to scan schematics
and manuals and put them online made the entire effort possible.

References

[1] Digital Equipment Corporation, “RP05/RP06 Device Control Logic
Maintenance Manual”, EK-RP056-MM-01, December 1975

[2] Digital Equipment Corporation, “RM Massbus Adapter Technical Description
Manual”, EK-RMADA-TD-001, October, 1980

[3] Digital Equipment Corporation, “RH11B Field Maintenance Print Set”,
MP00382, schematic BTCA, Bus Control page 1

[4] Digital Equipment Corporation, “RP04/05/06 Field Maintenance Print Set”,
MP-00086, schematic RG5, Register Logic page 5

[5] Bob Supnik, “Simulators: Virtual Machines of the Past (and Future)”, ACM
Queue, Vol 2 No 5, July/August 2004

	Summary
	Background: The Massbus
	RP vs RM, VAX vs PDP-11
	First Hypothesis: Magic In the RH70/RH11
	A Beautiful Theory vs Ugly Facts
	Back To The Primary Source
	The Smoking Gun; And An Explanation
	Conclusions
	Acknowledgements
	References

